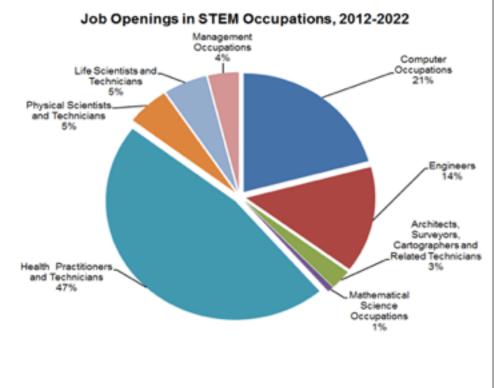

# Why STEM?



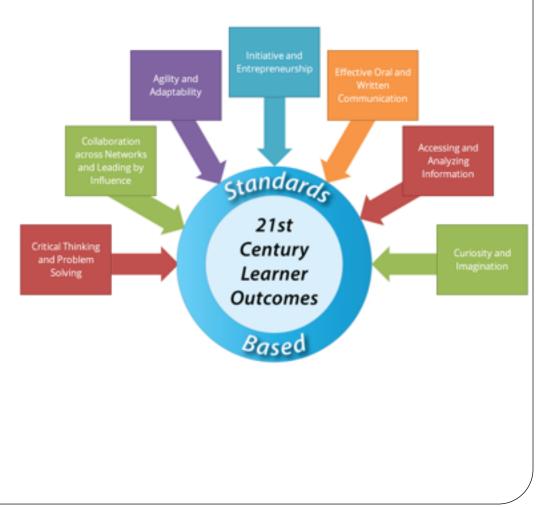


### STEM in Our World


 Science, Technology, Engineering, and Mathematics, STEM, are fields that are important to our future.

### When do you experience STEM?

- Science our natural world; oceans, plants, natural disasters, and food.
- Technology medicine, computers, smartphones.
- Engineering roads, bridges, wheelchairs or even a dining room table.
- Mathematics grocery store, tax forms, banking, or family budget.


### STEM and Our Children

- According to U.S. Department of Commerce, general STEM occupations are growing at 17% rate and most health care fields at 20%.
- These occupations include managers, engineering, doctors, home care aides, athletic trainers, and office personnel that can use computers effectively.
- Our children must develop the skills needed to be able to fill these jobs.



### Developing The 21<sup>st</sup> Century Workplace...

- Businesses are always looking for individuals who are:
  - Critical thinkers
  - Creative
  - Have good communication skills
  - Show initiative and can self-direct
  - Productive and accountable

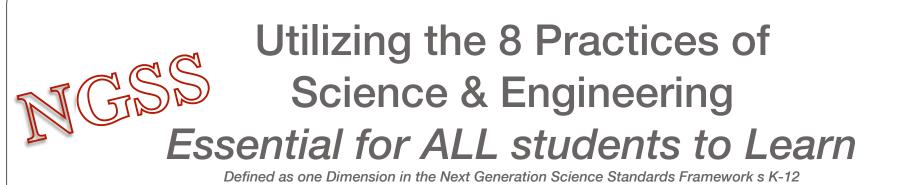


### STEM vs. Traditional Science Fairs

- A STEM project is a demonstration of a solution that students have developed for what they deem a "real world" problem.
- A STEM project is a showcase of ingenuity, student self-reflection and product that solves a problem.

- A science fair project is a unique way for a student to pose questions for which they must seek out answers and to satisfy their own curiosity about the world around them.
- A science fair project is an experiment, a demonstration, a research effort, a collection of scientific items, or display of scientific apparatus presented for viewing.

### **STEM Fair Will Help Students Gain These Skills**




- Following guidelines
- Investigating
- Conducting Research
- Interviewing
- Using scientific tools and techniques
  - Predicting and hypothesizing and inferring

- Identifying variables
- Observing
- Analyzing Data
- Preparing reports from research
- Preparing displays
- Speaking and networking with the public

### Science and STEM Fair Supports Florida Core Standards such as...

- Reading, writing and research involved in student science fair projects are one way for students to achieve the rigor and critical thinking evident in the Common Core Standards
- Cite specific textual evidence to support analysis of science and technical texts
- Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks
- Integrate quantitative information expressed in words in a text including information expressed visually (graph, etc)
- Compare and contrast information
- Write informative/explanatory texts, including scientific procedures/experiments
- Summarize numerical data sets in relation to their context



- Asking Questions (for science) and defining problems (for engineering)
- Developing and using models
- Planning and carrying out investigations
- Analyzing and interpreting data
- Using mathematics and computational thinking
- Constructing explanations (for science) and designing solutions (for engineering)
- Engaging in argument from evidence
- Obtaining, evaluating, and communicating information

### The Diocesan STEM Fair will ...

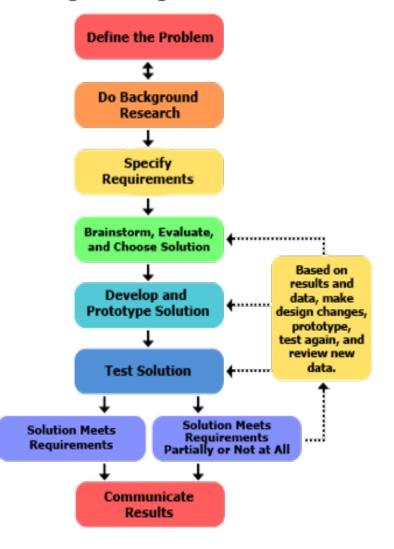
- Bring attention to the scientific experiences in our schools.
- Provide students with authentic, hands-on experiences through scientific investigation.
- Engage students in scientific investigation beyond the routine classroom.
- Give students the opportunity to communicate what they have learned to others.
- Celebrate student achievement.

### Your Role as a Teacher

How to Lead the Students into the Stem Fair

How do we Inspire Students to Move Forward Towards the 21<sup>st</sup> Century?

- The formula for competing at home and globally begins in elementary and middle school.
- With the incorporation of STEM into the curriculum and with STEM driven fairs, the students can be challenged to use the scientific method and scientific principles as scientists would.




### **STEM Methods**

#### Scientific Method Ask a Question £ Do Background Research Construct a ...... Hypothesis Test with an Experiment Experimental data becomes background Procedure Working? research for new/future Troubleshoot Ŧ project. procedure. Ask new **Carefully check** question, all steps and No Yes form new set-up. hypothesis, experiment again! Analyze Data and Draw Conclusions τ Results Align **Results Align** Partially or Not at All with Hypothesis with Hypothesis Communicate

Results

#### **Engineering Method**





#### All middle school students, grades 6-8, may participate in your school's science fair but only <u>STEM based projects</u> will represent your school at the Diocesan STEM fair.

Student teams of up to three may participate.

Who will Participate?

- Authentic STEM projects aim to:
  - Answer a question that solves a problem and/or benefits our world.
  - Example:
    - Develop an erosion prevention landscape system for a sand dunes area.
    - Design garden tools for individuals with missing limbs.
- Two approaches to a successful STEM project:
  - Experimental approach Traditional investigation
  - Design/engineering approach Building or inventing something

### Who will Judge?

- Each participating school will provide the names of 3 volunteer judges. Please include:
  - Area of expertise.
  - Preference in judging category.
  - Experience.
  - Contact information: phone # and e-mail address.
- Judges should be ...
  - Knowledgeable in the areas of STEM.
  - Available on Saturday January 14th for a 45 minute meeting before the judging begins.
  - Well prepared for judging by becoming familiar with the rubrics set up by the Diocesan STEM fair committee.



How to Help the Student Develop a Question?

- What are your students' interests?
- Help students find a topic idea that is STEM based or "real problems" that they can address using science and math.
- Some experimental topics may include:
  - Water or air quality
  - Health topics
  - Endangered species
- Engineering topics may include:
  - Toilets that use recycled water
  - Band instruments
  - Emergency personal shelter for hiking

Before you speak:

- T= Is it True?
- 🔣 = Is it Helpful?
- I= Is it Inspiring?
- N = Is it Necessary?
- 🔣 = Is it Kind?

### Non Inquiry Based Research

Not all areas of study are best served by scientific method....BE AWARE.

- Engineering Projects creating things that never were
  - Define a need and research what already exists...How can they make this better?
  - Develop or establish a design criteria.
  - Build and test a prototype. Consider reliability, cost, repair and servicing.
  - Retest and redesign as necessary.
  - Product testing.
- Computer Science Projects
  - Creating and/or writing new algorithms to solve a problem or improve existing one.
  - Simulations, models or virtual reality are other areas.
  - Computer surveys.
- Mathematics Projects
  - Involves proofs, solving equations.
  - Math is the language of science and used to explain existing phenomena or prove new concepts or ideas.







### Experimental Project Approval...

- Help students define the question/problem. Then obtain...
  - Teacher approval
  - Parent approval
- What is the hypothesis and/or expected outcome(s)?
- Check plan of experimental procedures
  - Procedure detail all procedures and experimental design to be used for data collection.
  - Include all safety procedures.
  - Must be a "controlled" experiment one variable changed at a time.
  - Include sufficient number of trials (minimum of 7 trials).
  - Data Analysis describe the procedures you will use to analyze the data/results that answer the research question(s)
  - Include list of materials.
- Bibliography
  - List at least 5 major resources from your literature review.
  - APA format must be used to cite sources. Good reference is OWL Purdue.
  - Include resources used to develop experimental design and/or safety procedures.

### Engineering/Design Project Approval...

- Help students define a "need" expressed as a goal. Then obtain...
  - Teacher approval
  - Parent approval
- Determine the criteria for the design and limitations
  - Examine details on building materials needed, etc.
  - Evaluate prototype
  - Explain the testing phase
  - Describe improvement plan
  - Show how the analysis of results, design changes and retest should be done.
- Bibliography
  - List at least 5 major resources from your literature review.
  - APA format must be used to cite sources. Good reference is OWL Purdue.
  - Include resources used to develop experimental design and/or safety procedures.



### Logbook and Recoding Information



- All students participating in the STEM fair will have a logbook.
- Logbook will include all research conducted by the student.
- Students must keep detailed notes of metric measurements and observations in the log book.
- Develop and use data tables or charts to record quantitative and/or qualitative data.
- Student handwritten notes and original writing.
- Could be used to PROVE what they actually did.

### Analyze Data

- Examine their findings.
- Check "pictures" (graphs).
- Have they identified patterns?
- Did they get expected results? Why or why not?
- Was the experiment performed EXACTLY as they described it?
- Are there any other explanations not originally considered?
- Were there any data or experimental errors?
- Statistically analyze your data and be able to explain their meaning.



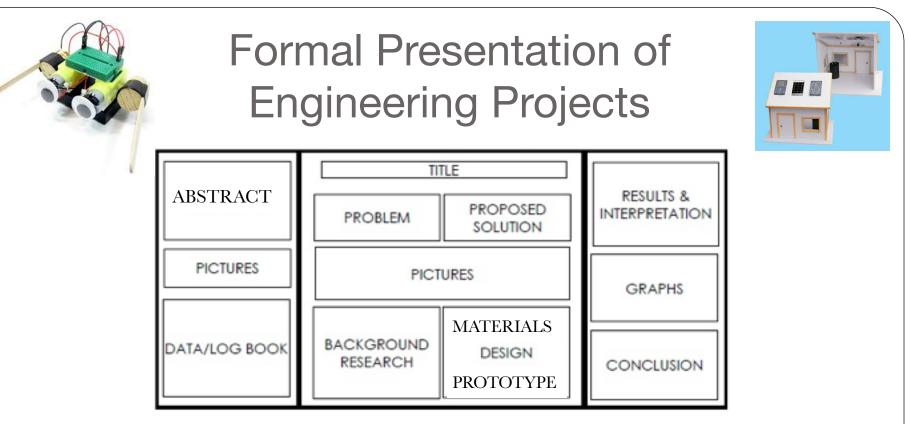
### Conclusions



- Did the variable(s) tested cause change when compared to the standard?
- What <u>patterns</u> did they see from graph analysis?
  - Explain the data.
- Which variable(s) were important?
- Did they collect enough data?
- Was the experiment repeated often enough for accurate results?
- It's okay if results do not support the hypothesis.
- Were there errors that may have caused differences? If so, what?
- What are the practical applications of the project?
- How could this project be used in the real world?
- How would they improve the experiment and what would they do differently?

### **Project Displays**

## Experimental and Design Display Formats to Use


### Formal Presentation of Experimental/Traditional Project



The display board for experimental projects should include:

- Abstract
  - 250 words on one page
- Testable question
- Hypothesis
- Background research

- Materials
- Procedure
- Results
- Analysis & Conclusion
- Future direction



The display board for engineering projects **can vary** depending on the type of project the student has. However, they all should include:

- Abstract
  - 250 words on one page
- Purpose of the experiment
- Background research

- Design/Prototype
- Testing
- Results
- Conclusion/Redesign

### What to Include in the Abstract?

## Experimental project required elements...

- 250 words on one page only
- Purpose of the experiment
- Procedures used
- Summary of data and conclusions
- Research applications

Design project required elements...

- 250 words on one page only
- Purpose of the design
- Prototype building process
- Testing of prototype
- Summary of data and conclusions
- Practical use

### Presentation of the Research The Experimental Research Paper

- Title Page and Table of Contents
- Abstract



- Testable question, Variables, and Hypothesis
- Materials
- Procedure
- Results, Data, Observations
- Data analysis and discussion
- Conclusions, ideas for future research
- References/Bibliography

### Presentation of the Research The Engineering Research Paper

- Title Page and Table of Contents
- Abstract
- Purpose/need
- Materials
- Building/construction process of the prototype
- Testing phase
- Results, Data, Observations final product
- Data analysis and discussion
- Conclusions, ideas for future research
- References/Bibliography



### How will the Students be Judged

### **Experimental Judging Rubrics**

Students will be judged on a modified competency-based rubric:

- Evidence of Science Process Skills
  - Science Process Skills (8)
  - Scientific Approach Overall (8)
  - Scientific Approach Variables (8)
  - Scientific Approach Control/Comparison Group (3)
  - Accuracy of Data and Observations (8)
  - Data Analysis and Discussion (8)
  - Validity of Conclusion (8)
  - Originality (5)

### **Experimental Judging Rubrics**

Students will be judged on a modified competency-based rubric:

Communication

- Display
  - Information Experimental (3)
  - Artistic Qualities and Correctness (3)
- Oral Presentation
  - Presentation Quality (3)
  - Dynamics (3)

### **Experimental Judging Rubrics**

Students will be judged on a modified competency-based rubric containing:

- Experimental Log
  - Abstract (2)
  - Safety sheet (2)
  - Title Page and Table of Contents (2)
  - Acknowledgements (1)
  - Purpose and Hypothesis (2)
  - Background Research review of Literature (5)
  - Materials (2)
  - Procedure (2)
  - Results (3)
  - Conclusion (3)
  - Reference List Bibliography (2)

### **Engineering/Design Judging Rubrics**

Students will be judged on a modified competency-based rubric:

- Evidence of Design Process Skills
  - Design Process Skills (8)
  - Design Approach Overall (8)
  - Design Approach Performance Criteria (8)
  - Design Approach Preliminary Design Plan (3)
  - Constructing and Testing the Design Prototype (8)
  - Redesign and Retest (8)
  - Validity of Evaluation/Conclusion (8)
  - Originality (5)

### **Engineering/Design Judging Rubrics**

Students will be judged on a modified competency-based rubric containing:

- Communication
  - Display
    - Information Design (3)
    - Artistic Qualities and Correctness (3)
  - Oral Presentation
    - Presentation Quality (3)
    - Dynamics (3)

### **Engineering/Design Judging Rubrics**

Students will be judged on a modified competency-based rubric containing:

- Experimental Log
  - Abstract (2)
  - Safety sheet (2)
  - Title Page and Table of Contents (2)
  - Acknowledgements (1)
  - Problem or Need (2)
  - Background Research review of Literature (5)
  - Design Plan (2)
  - Technical Aspects (3)
  - Result of Testing and Redesign (2)
  - Neatness and Orderliness (2)
  - Evaluation and conclusion (2)
  - Reference List Bibliography (2)

### Works Cited

- 1. Judging Policy and Criteria. State Science & Engineering Fair of Florida. Web. 2014.
- Townsend, J.F. & Naughton, J.A. IJAS State Exposition Project Session – Design Classification. Web. 2012.
- Townsend, J.F. & Naughton, J.A. IJAS State Exposition Project Session – Experimental Classification. Web. 2012.

### Preparing for Judging

Judging and Oral Presentation

### The Interview for STEM Competition



- The interview is the final determination of the student's work.
- The student should be able to show...
  - How they come up with this idea?
  - Thorough and well-thought out research
  - How much thought and design is student's own work
  - If the data was collected and analyzed correctly
  - What future plans do they have to continue research?
  - What are the practical applications of the project?

### The Interview for STEM Competition

- Encourage students to speak freely and confidently
- Greet the judge and introduce themselves
   – good first impression
- Appearance, good manners, appropriate attire, and enthusiasm for what you are doing will impress
- Relax, smile and enjoy the time



### **Suggested Timeline**

| Date  | Goal                                                                                        |
|-------|---------------------------------------------------------------------------------------------|
| 8/15  | Website will be set up for schools and teachers to register for participation in STEM Fair. |
| 8/29  | Students must begin brainstorming for ideas; have logbook and begin research.               |
| 9/12  | Soft deadline for review of literature.                                                     |
| 9/19  | Soft deadline for research plan; experimentation can begin.                                 |
| 10/24 | Soft deadline for data collection; student work on display.                                 |
| 12/5  | Site based finalist are identified by schools.                                              |
| 12/13 | Regional Fair forms are to be completed and e-mailed; reviewed by county committee.         |

### Day of the STEM Fair Timeline January 14, 2017

| Time        | Goal                                                   |
|-------------|--------------------------------------------------------|
| 7:00        | Doors open. All projects must be set up by 8:00<br>AM. |
| 8:00        | Judges meeting                                         |
| 9:00-12:00  | Judging begins                                         |
| 1:00 - 3:00 | Public Viewing                                         |
| 3:00-3:45   | Project removal/clean-up                               |
| 4:00-6:00   | Closing ceremony                                       |

## Hillsborough and Pinellas STEM Fair

Winners from the Diocesan STEM Fair qualify

- When: , 2017
- Location:
  , Tampa, Florida

### • Time:

## Required FORMS for Pinellas County STEM Fair

### **Presented by Karen Johnson:**

### Lead Teacher at "Nature's Classroom"

### Sources

- <u>http://atlantaschoolguide.com/wordpress/wp-content/</u> <u>uploads/2012/12/stem-education1.jpg</u>
- <u>http://3.bp.blogspot.com/-Toc5ZDiz3aU/VgQV3DRcvlI/</u> <u>AAAAAAAAAAAAA/du\_PdmAoRSU/s1600-r/skills</u> <u>%2B21st.png</u>
- <u>http://barbarabray.net/wp-content/uploads/2011/11/</u> <u>science\_wordle.jpg</u>
- <u>https://shownsellbeta.files.wordpress.com/2014/12/</u> wordle-for-21st-century-skills-white.png?w=700&h=439
- <u>http://sacredwilderness.net/wp/wp-content/uploads/</u> 2016/01/Speak.jpg
- <u>http://stperpetua.schoolwires.net/cms/lib01/</u> <u>CA02001073/Centricity/Domain/142/</u> <u>sciencefair3.gifhttp://www.ssefflorida.com/resources.html</u>